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We study the q-dependent susceptibility χ (q) of a series of quasiperiodic Ising models
on the square lattice. Several different kinds of aperiodic sequences of couplings are
studied, including the Fibonacci and silver-mean sequences. Some identities and theo-
rems are generalized and simpler derivations are presented. We find that the q-dependent
susceptibilities are periodic, with the commensurate peaks of χ (q) located at the same
positions as for the regular Ising models. Hence, incommensurate everywhere-dense
peaks can only occur in cases with mixed ferromagnetic–antiferromagnetic interactions
or if the underlying lattice is aperiodic. For mixed-interaction models the positions of
the peaks depend strongly on the aperiodic sequence chosen.

KEY WORDS: Ising model, Z -invariance, quasiperiodicity, golden ratio, silver mean,
correlation functions, wavevector-dependent susceptibility.

1. INTRODUCTION

In our most recent paper,(1) we have studied the q-dependent susceptibility χ (q)
for a Z -invariant ferromagnetic Ising model on Penrose tiles. (The χ (q) is in many
ways equivalent to the structure function determining diffraction patterns.) We
have found that χ (q) is aperiodic and has incommensurate peaks which are ev-
erywhere dense, though only a limited number of them are visible at temperatures
far away from the critical temperature. This is very different from the behavior
of χ (q) in Fibonacci Ising models defined on regular lattices,(2,3) where χ (q) is
periodic and has only commensurate peaks located at the same positions as for the
regular Ising models when the couplings between the spins are ferromagnetic.
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The periodicity of χ (q), when the lattice is regular, is due to the fact that we
may write

kBT χ (qx , qy) =
∑

l,m

ei(qx l+qy m)C(l, m) (1.1)

where the average of the connected correlation function for two spins with fixed
separations (l, m) is

C(l, m) = lim
L→∞

1

L2

∑

l ′,m ′
[〈σl ′,m ′σl ′+l,m ′+m〉 − 〈σl ′,m ′ 〉〈σl ′+l,m ′+m〉]. (1.2)

in which L denotes the number of rows and columns in the lattice, so that L2 is the
total number of spins. Since l and m are integers, it is easily seen from (1.1) that
the q-dependent susceptibilities for such cases are periodic with periods 2π in qx

and qy . When the lattice structure is quasi-periodic, as in the case of the Penrose
tiles studied in our previous paper,(1) it is not possible to split the summation in
the susceptibility in this way and χ (q) is no longer periodic.

In this paper, we want to examine the q-dependent susceptibility of some
other aperiodic ferromagnetic Ising models defined on regular lattices, to find
out if the Fibonacci Ising models are different from other more general aperiodic
models.

To be more specific, we consider the Z -invariant inhomogeneous Ising
model(2−6) defined on a rectangular lattice as shown in Fig. 1, and let either
one of the sequences of rapidities, (un)n∈Z or (vm)m∈Z or both, be certain aperiodic
sequences. In doing so, we shall derive a number of properties for these sequences
which are part of the main results of this paper.

As before, the edge interactions are parametrized by (see Fig. 2)

sinh (2K (ui , v j )) = k sc(ui − v j , k ′) = cs(λ + v j − ui , k ′),
(1.3)

sinh (2K̄ (ui , v j )) = cs(ui − v j , k ′) = k sc(λ + v j − ui , k ′),

where λ ≡ K (k ′) is the complete elliptic integral of the first kind, k and k ′ =√
1 − k2 are the elliptic moduli, which are temperature variables, and they are the

same for all couplings.

2. QUASI-PERIODIC SEQUENCES

Quasi-periodic sequences were first used—within the related context of the
study of the specific heat of layered Ising models—by Tracy.(7,8) Even though the
particular sequences used by Tracy(8) may all be interesting, for some technical
reasons we shall consider here only the aperiodic sequences which were studied
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Fig. 1. The lattice of a two-dimensional Z -invariant Ising model: The rapidity lines on the medial
graph are represented by oriented dashed lines. The positions of the spins are indicated by small black
circles, the positions of two of the dual spins by white circles.

by de Bruijn.(9) Let

α j ≡ 1
2 [( j + 1) +

√
( j + 1)2 + 4 ], for j = 0, 1, 2, . . . , (2.4)

such that α0 = (1 + √
5)/2 is the golden ratio and α1 = 1 + √

2 is the silver mean.
Define for each j a sequence (p j (n))n∈Z,

p j (n) ≡ 
γ + (n + 1)/α j� − 
γ + n/α j�, (2.5)

(a) (b)

Fig. 2. (a) Horizontal coupling Ki j = K (ui , v j ); (b) Vertical coupling K̄i j = K̄ (ui , v j ).
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where 
x� is the largest integer ≤ x , and γ is a real number. In this paper, γ is
chosen such that γ + m/α j does not equal an integer for any m. Consequently, the
sequence in (2.5) is not changed when the floor (
x�) in (2.5) is replaced by ceiling
or roof (x�: smallest integer ≥ x). For the silver mean sequence (p1(n))n∈Z, we
choose γ �= m + l

√
2 for all integers m and l. More generally, it is sufficient to

require that γ is not a solution of a quadratic equation with integer coefficients.
It is shown by de Bruijn(9) that the (p j (n))n∈Z are sequences of 0’s and 1’s,

which may also be easily shown by rewriting (2.5) as

p j (n) = 
xn + 1/α j�, xn = {γ + n/α j }, (2.6)

after decomposing γ + n/α j into its integer and fractional parts, i.e.,

γ + (n + 1)/α j = 
γ + n/α j� + {γ + n/α j } + 1/α j , (2.7)

{x} ≡ x − 
x�, 0 ≤ {x} < 1. (2.8)

Since α j > 1 and therefore 0 ≤ xn + 1/α j < 2, it follows that p j (n) = 0 if 0 ≤
xn + 1/α j < 1 and p j (n) = 1 if 1 ≤ xn + 1/α j < 2. As j increases (and so does
α j ), the corresponding sequences (p j (n))n∈Z contain increasing numbers of zeros.
In fact, for fixed j , the p j ’s can be separated into blocks of j + 1 digits (a one
followed by j zeros) or j + 2 digits (a one followed by j + 1 zeros). Furthermore,
it is also shown by de Bruijn(9) that the production rule of replacing each 1 in a
sequence p j ’s by a 1 followed by j + 1 zeros and replacing each 0 by a 1 followed
by j zeros produces a new sequence of p′

j ’s of the form (2.5) with γ → γ ′ and
γ ′ = −{γ }/α j .

All these sequences are known to be aperiodic. Thus, if we let um = uA for
p j (m) = 1, and um = uB for p j (m) = 0, then the sequence of line variables or
rapidities (um)m∈Z is related to the sequence (p j (m))m∈Z, and therefore is also
quasiperiodic. For j = 0, the p0(m)’s and the corresponding um’s are Fibonacci
sequences, and this case we have studied earlier.(2,3,7) Likewise, we may also
associate a sequence of rapidities (vn)n∈Z to the sequence (p j (n))n∈Z. In this way,
we can construct several quasiperiodic Z -invariant Ising models on the square
lattice.

In order to calculate the average of the connected correlation functions,
C(l, m) given by (1.2), we need to generalize a result of Tracy(7) for Fibonacci se-
quences. Tracy(8) mentions also some other quasi-periodic sequences, for which—
as far as we know—the corresponding theorems are not yet available. But we can
generalize his result to general j > 0 while simplifying his proof at the same time.

Averages: Following Tracy,(7) we let N (n, m) be the number of 1’s in the sub-
sequence p j (m), . . . , p j (m + n − 1) which is also the number of uA’s in the
subsequence um, . . . , um+n−1.
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Because the only allowed values of p j (n) are either 1 or 0, the number of 1’s
among these n consecutive terms of p j ’s is

N (n, m) =
n−1∑

�=0

p j (m + �) = 
γ + (m + n)/α j� − 
γ + m/α j�
= 
xm + n/α j� = 
xm + {n/α j }� + 
n/α j�, (2.9)

where xm is defined in (2.6) and 0 ≤ xm < 1. Since 0 ≤ xm + {n/α j } < 2, we find

N (n, m) =
{ 
n/α j� for xm + {n/α j } < 1,


n/α j� + 1 for xm + {n/α j } ≥ 1.
(2.10)

Noting that 1/α j is irrational, we find from Kronecker’s theorem(10) that as m varies
from −∞ to ∞, the xm’s in (2.6) are distributed everywhere dense and uniformly
between 0 and 1. Thus the probability of finding an xm with xm < 1 − {n/α j } is
1 − {n/α j }, whereas the probability of xm ≥ 1 − {n/α j } is {n/α j }. Consequently,
we have proved the following theorem:

Theorem 1. An infinite quasiperiodic sequence (um)m∈Z defined by um = uA if
p j (m) = 1 and um = uB if p j (m) = 0 with the p j ’s given by (2.5) contains blocks
of a single uA followed by either j or j + 1 uB’s. The number of uA’s among n
consecutive u’s is either 
n/α j� with probability 1 − {n/α j } or 
n/α j� + 1 with
probability {n/α j }.
We have thus generalized the result of Tracy(7) for Fibonacci sequences (with
j = 0) to other cases ( j > 0), while also simplifying the proof.

Sequences of Three Objects. Since each p j sequence is quasiperiodic, if we shift
a p j sequence by a certain number of digits and subtract the shifted sequence
from the original one, the resulting sequence is also quasi-periodic, having three
different values: 1, 0 and −1. Moreover, as a p j sequence consists of blocks of
j + 1 digits with a one followed by j zeros or blocks of j + 2 digits with a one
followed by j + 1 zeros, we find for j �= 0 or α j �= (1 + √

5)/2, that two consec-
utive terms in the original p j sequence cannot be simultaneously 1. Consequently,
if we let

q j (�) = p j (� + 1) − p j (�), � ∈ Z, (2.11)

the average number of 1’s (or −1’s) among n consecutive numbers can be easily
evaluated. In this paper, we restrict ourselves to the sequences (2.11) with j ≥ 1.
Therefore, we work out the needed probabilities next.

As it is indeed impossible to have both p j (� + 1) and p j (�) equal to 1, we
find q j (�) = 1 if p j (� + 1) = 1; q j (�) = −1 if p j (�) = 1, and 0 otherwise when
p j (� + 1) = p j (�) = 0. Now we let um = uA if q j (m) = 1, um = uB if q j (m) = 0,
and um = uC if q j (m) = −1. Consequently, the sequence of rapidities um is related
to the sequence q j (m), and is therefore also quasiperiodic.
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Let the number NA(n, m), (NB(n, m) or NC(n, m)) denote the number of
1’s, (0’s or −1’s) in the subsequence q j (m), . . ., q j (m+n−1), which is also the
number of uA, (uB or uC) in the subsequence um, . . ., um+n−1. Since the number
of 1’s in q j (m), . . ., q j (m+n−1) is equivalent to the number of 1’s in p j (m +
1), . . ., p j (m + n), we find

NA(n, m) = 
γ +(n+m+1)/α j�−
γ +(m+1)/α j�
= 
xm+1 + n/α j�

=
{ 
n/α j� for xm+1 < 1 − {n/α j },


n/α j� + 1 for xm+1 ≥ 1 − {n/α j }. (2.12)

cf. (2.9) and (2.10). Likewise, the number of −1’s in the new subsequence
q j (m), . . ., q j (m + n − 1) is equivalent to the number of 1’s in the original
p j (m), . . ., p j (m + n − 1), and we find

NC(n, m) = 
γ + (n + m)/α j� − 
γ + m/α j�
= 
xm + n/α j�

=
{ 
n/α j� for xm < 1 − {n/α j },


n/α j� + 1 for xm ≥ 1 − {n/α j }. (2.13)

Since the total must be n, we have

NB(n, m) = n − NA(n, m) − NC(n, m). (2.14)

Using (2.6), we find

xm+1 = {xm + 1/α j } =
{

xm + 1/α j for xm + 1/α j < 1,

xm + 1/α j − 1 for xm + 1/α j ≥ 1.
(2.15)

In view of the above, let us write

NA(n, m) = 
n/α j� + µ, with µ = 0 or 1,
(2.16)

NC(n, m) = 
n/α j� + ν, with ν = 0 or 1.

Equations (2.12), (2.13), and (2.15) determine the proper choices of µ and ν as
functions of xm and {n/α j }. This is illustrated in Fig. 3 for the case j = 1; the
situation is qualitatively the same for all j ≥ 1. We remind ourselves that the xm

defined in (2.6) is everywhere dense and uniformly distributed in [0, 1), as m
runs from −∞ to ∞. Consequently, the choice ν = 0 is seen from (2.13) and
(2.10) to correspond to the segment in [0, 1] where the inequality 0 ≤ xm < 1 −
{n/α j } is satisfied, while ν = 1 is given by its complement satisfying 1 − {n/α j } ≤
xm < 1. Using (2.15), we find 0 ≤ xm+1 < 1 − {n/α j } is equivalent to both 1 −
1/α j ≤ xm < 2 − {n/α j } − 1/α j and 0 ≤ xm < 1 − {n/α j } − 1/α j . Since 0 ≤
xm < 1, the second inequality cannot be satisfied if 1 − {n/α j } − 1/α j < 0, which
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Fig. 3. The regions of xm where NA(n, m) = 
n/α j � + µ and NC(n, m) = 
n/α j � + ν are shown for
the silver-mean case j = 1. The segments where µ or ν = 0 are indicated by thick white strips, while
the segments where µ or ν = 1 are indicated by narrow shaded strips. The µ-strips are below and the
ν-strips on top.

is the defining condition for Fig. 3 (c); here µ = 0 is the segment where 1 −
1/α j ≤ xm < 2 − {n/α j } − 1/α j ; its complement µ = 1, however, consists of two
disjunct segments. Cases with 1 − {n/α j } − 1/α j > 0 are shown in Fig. 3 (a) and
(b); here µ = 0 consists of two disjunct segments satisfying 1 − 1/α j ≤ xm < 1
or 0 ≤ xm < 1 − {n/α j } − 1/α j , while its complement µ = 1 is now just one
segment given by 1 − {n/α j } − 1/α j ≤ xm < 1 − 1/α j .

Let P(µ′, ν ′), for µ′, ν ′ = 0, 1, denote the joint probability for having both
NA(n, m) = 
n/α j� + µ′ and NC(n, m) = 
n/α j� + ν ′. Then P(µ′, ν ′) is the total
length of the intersection of the segment or segments where µ = µ′ with the
segment where ν = ν ′. The results are different for the three different regions of
{n/α j }. We find

P(0, 0) = 1 − 2{n/α j }
P(1, 0) = P(0, 1) = {n/α j }
P(1, 1) = 0

⎫
⎬

⎭ if {n/α j } ≤ 1/α j , (2.17)

P(0, 0) = 1 − {n/α j } − 1/α j

P(1, 0) = P(0, 1) = 1/α j

P(1, 1) = {n/α j } − 1/α j

⎫
⎬

⎭ if 1/α j ≤ {n/α j } ≤ 1 − 1/α j , (2.18)

P(0, 0) = 0
P(1, 0) = P(0, 1) = 1 − {n/α j }
P(1, 1) = 2{n/α j } − 1

⎫
⎬

⎭ if {n/α j } ≥ 1 − 1/α j . (2.19)

Remark. Both Theorem 1 for the two-object case and Eqs. (2.17)
through (2.19) for the three-object case have a reflection symmetry un-
der the formal replacement n → −n, (n > 0). Since α j is irrational,
this means we have to replace {n/α j } → {−n/α j } = 1 − {n/α j }, so that
P(µ, ν) → P(1 − µ, 1 − ν). Also, −
−n/α j� = n/α j� = 
n/α j� + 1, and
(2.17) is to be replaced by NA(−n, m) = 
n/α j� + 1 − µ, NC(−n, m) =
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n/α j� + 1 − ν. Therefore, we indeed have that the probability distribution is
invariant under reflections. It is also translationally invariant, as (2.17)–(2.19) are
independent of m.

3. CORRELATIONS

The spin-spin correlation function in the inhomogeneous Z -invariant Ising
model has been shown by Baxter(4) to depend only on the elliptic modulus k
and the rapidity variables, u’s and v’s, of rapidity lines that are sandwiched
between the two spins. Particularly, for −l ≤ m ≤ l, when the arrows of all
these relevant rapidity lines are pointing to the same side of the line joining
the two spins (see Fig. 1), we have—according to the rule in Ref. 5 —the
result

〈σ j,kσ j+l,k+m〉 = g2l(u j−k+1, . . . , ul−m+ j−k, v j+k, . . . , vl+m+ j+k−1), (3.20)

〈µ j,kµ j+l,k+m〉 = g∗
2l(u j−k+1, . . . , ul−m+ j−k, v j+k+1, . . . , vl+m+ j+k), (3.21)

while for −m ≤ l ≤ m, when the arrows of the vertical rapidity lines and the
arrows of the horizontal rapidity lines are pointing to opposite sides of the joining
line, we find

〈σ j,kσ j+l,k+m〉
= g2m(u j−k+l−m+1, . . . , u j−k, λ + v j+k, . . . , λ + vl+m+ j+k−1), (3.22)

〈µ j,kµ j+l,k+m〉
= g∗

2m(u j−k+l−m+1, . . . , u j−k, λ + v j+k+1. . . . , λ + vl+m+ j+k), (3.23)

Here λ ≡ K(k ′) is a complete elliptic integral of the first kind. Note that the explicit
dependence of λ, g and g∗ on the elliptic modulus k is dropped, but it should still
be understood to be implicitly present. Also, the µ ≡ σ ∗ stand for dual spins on
the dual lattice, which is at the dual temperature.

As pointed out first by Baxter,(4) the universal functions g2l and g∗
2l have

“permutation symmetry” (meaning they are invariant under all permutations of
the rapidities) and the “difference property” (which implies a translation invariance
when shifting all the rapidities by the same amount v(0)). The functions g2l and g∗

2l
for l > 1 can be obtained iteratively.(2,3,5) The final technical point is to explain
how the averaging in (1.2) is done.
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3.1. Averaging

In this paper, we shall consider quasiperiodic sequences which are either
sequences of two objects:

um =
{

uA if p j (m) = 1,

uB if p j (m) = 0,
vm =

{
vA if p j (m) = 1,

vB if p j (m) = 0,
(3.24)

for fixed j ≥ 0, or sequences of three objects:

um =
⎧
⎨

⎩

uA if q j (m) = 1,

uB if q j (m) = 0,

uC if q j (m) = −1,

vm = v, j ≥ 1. (3.25)

To evaluate C(l, m) and C∗(l, m) for |m| ≤ l, we use (3.20) and (3.21). It is easily
seen from these equations that there are l − m horizontal rapidity lines u and l + m
vertical lines v sandwiched between the two spins.

For the two-object sequences in (3.24), we find from Theorem 1 that the
number of uA’s among the l − m consecutive u’s is either 
s� with probability
1 − {s} or 
s� + 1 with probability {s} where s = (l − m)/α j , while the number
of vA’s among the l + m consecutive v’s is either 
r� with probability 1 − {r} or

r� + 1 with probability {r} in which r = (l + m)/α j . Consequently, the averaged
connected correlation function in (1.2) for |m| ≤ l becomes

C(l, m) = (1 − {s})(1 − {r}) ḡ[
s�, l − m − 
s�, 
r�, l + m − 
r�]

+ (1 − {s}){r} ḡ[
s�, l − m − 
s�, 
r� + 1, l + m − 
r� − 1]

+{s}(1 − {r}) ḡ[
s� + 1, l − m − 
s� − 1, 
r�, l + m − 
r�]

+{s}{r} ḡ[
s� + 1, l − m − 
s� − 1, 
r� + 1, l + m − 
r� − 1]

−〈σ 〉2, (3.26)

where

s ≡ (l − m)/α j , r ≡ (l + m)/α j , (3.27)

ḡ[m3, m2, m1, m0]

≡ g(

m3︷ ︸︸ ︷
uA, . . . , uA,

m2︷ ︸︸ ︷
uB, . . . , uB,

m1︷ ︸︸ ︷
vA, . . . , vA,

m0︷ ︸︸ ︷
vB, . . . , vB) (3.28)

and 〈σ 〉 = 0, as T ≥ Tc. The averaged correlation C∗(l, m) of the disorder vari-
ables, which is also the correlation function for T ≤ Tc, can be obtained from the
above equations simply by replacing g by g∗ and 〈σ 〉 by (1 − k−2)1/8.

For the three-object sequences in (3.25), the numbers of uA’s and uC’s among
the l − m consecutive u’s are given by (2.12) and (2.13), and the averaged con-
nected correlation in (1.2) can be evaluated using (2.17) through (2.19). We find,
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for {s} ≤ 1/α j ,

C(l, m) = (1 − 2{s}) g̃[
s�, l − m − 2
s�, 
s�, l + m]

+{s} g̃[
s�, l − m − 2
s� − 1, 
s� + 1, l + m]

+{s} g̃[
s� + 1, l − m − 2
s� − 1, 
s�, l + m]

−〈σ 〉2, (3.29)

where

g̃[m3, m2, m1, m0]

≡ g(

m3︷ ︸︸ ︷
uA, . . . , uA,

m2︷ ︸︸ ︷
uB, . . . , uB,

m1︷ ︸︸ ︷
uC, . . . , uC,

m0︷ ︸︸ ︷
v, . . . , v). (3.30)

For 1/α j ≤ {s} ≤ 1 − 1/α j , we find

C(l, m) = (1 − {s} − 1/α j ) g̃[
s�, l − m − 2
s�, 
s�, l + m]

+ (1/α j ) g̃[
s�, l − m − 2
s� − 1, 
s� + 1, l + m]

+ (1/α j ) g̃[
s� + 1, l − m − 2
s� − 1, 
s�, l + m]

+ ({s} − 1/α j ) g̃[
s� + 1, l − m − 2
s� − 2, 
s� + 1, l + m]

−〈σ 〉2, (3.31)

whereas, for {s} ≥ 1 − 1/α j ,

C(l, m) = (1 − {s}) g̃[
s�, l − m − 2
s� − 1, 
s� + 1, l + m]

+ (1 − {s}) g̃[
s� + 1, l − m − 2
s� − 1, 
s�, l + m]

+ (2{s} − 1) g̃[
s� + 1, l − m − 2
s� − 2, 
s� + 1, l + m]

−〈σ 〉2. (3.32)

Again, the formulae for C∗(l, m) are similar, cf. the discussion below (3.28). Also,
it is easily verified that we have the general inversion symmetry

C(−l,−m) = C(l, m), C∗(−l,−m) = C∗(l, m), (3.33)

valid for all values of l and m. Hence, we have now the results for |m| ≤ |l|.
To evaluate C(−m, l) and C∗(−m, l) for |m| ≤ l, we let l → −m and m → l

in (3.22) and (3.23), and find that there are l + m horizontal lines u and l − m
vertical lines v sandwiched between the two spins.

If um and vn are given by (3.24), Theorem 1 can again be used to find the
average number of uA’s among the l + m consecutive u’s and the average number
of vA + λ’s among the l − m consecutive v’s. As a consequence the averaged
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connected correlation function in (1.2) for |m| ≤ l becomes

C(−m, l) = (1 − {r})(1 − {s}) g′[
r�, l + m − 
r�, 
s�, l − m − 
s�]

+{r}(1 − {s}) g′[
r� + 1, l + m − 
r� − 1, 
s�, l − m − 
s�]

+ (1 − {r}){s} g′[
r�, l + m − 
r�, 
s� + 1, l − m − 
s� − 1]

+{r}{s} g′[
r� + 1, l + m − 
r�−1, 
s� + 1, l − m − 
s�−1]

−〈σ 〉2, (3.34)

where

g′[m3, m2, m1, m0]

≡ g(

m3︷ ︸︸ ︷
uA, . . . , uA,

m2︷ ︸︸ ︷
uB, . . . , uB,

m1︷ ︸︸ ︷
λ + vA, . . . , λ + vA,

m0︷ ︸︸ ︷
λ + vB, . . . , λ + vB).

(3.35)

For the three-object sequences in (3.25), the average numbers of uA’s and uC’s
among the l + m consecutive u’s are given by (2.17) through (2.19). For |m| ≤ l
and {r} ≤ 1/α j , we find

C(−m, l) = (1 − 2{r}) g̃′[
r�, l + m − 2
r�, 
r�, l − m]

+{r} g̃′[
r�, l + m − 2
r� − 1, 
r� + 1, l − m]

+{r} g[
r� + 1, l + m − 2
r� − 1, 
r�, l − m]

−〈σ 〉2, (3.36)

while, for 1/α j ≤ {r} ≤ 1 − 1/α j ,

C(−m, l) = (1 − {r} − 1/α j ) g̃′[
r�, l + m − 2
r�, 
r�, l − m]

+ (1/α j ) g̃′[
r�, l + m − 2
s� − 1, 
r� + 1, l − m]

+ (1/α j ) g̃′[
r� + 1, l + m − 2
r� − 1, 
r�, l − m]

+ ({r} − 1/α j ) g̃′[
r� + 1, l + m − 2
r� − 2, 
r� + 1, l − m]

−〈σ 〉2, (3.37)

whereas, for {r} ≥ 1 − 1/α j ,

C(−m, l) = (1 − {r}) g̃′[
r�, l + m − 2
r� − 1, 
r� + 1, l − m]

+(1 − {r}) g̃′[
r� + 1, l + m − 2
r� − 1, 
r�, l − m]

+ (2{r} − 1) g̃′
r� + 1, l + m − 2
r� − 2, 
r� + 1, l − m]

−〈σ 〉2, (3.38)
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where

g̃′[m3, m2, m1, m0]

≡ g(

m3︷ ︸︸ ︷
uA, . . . , uA,

m2︷ ︸︸ ︷
uB, . . . , uB,

m1︷ ︸︸ ︷
uC, . . . , uC,

m0︷ ︸︸ ︷
λ + v, . . . , λ + v). (3.39)

In view of (3.33) and the discussion below (3.28), we have now obtained a
complete set of formulae for C(l, m) and C∗(l, m). We can use difference equations
to obtain, by iteration, all needed g’s and g∗’s. The details of such calculations
are in our previous work,(3,11) and will not be presented here. Since the various
g[m3, m2, m1, m0]’s are obtained iteratively from g’s and g∗’s with smaller mi ’s,
it is necessary to evaluate the g[m3, m2, m1, m0]’s for almost all mi such that
0 ≤ mi ≤ N even though for each fixed α j , only a fraction of these g’s are needed.
In spite of powerful modern computers, these calculations are still quite time
consuming. Therefore, it is more economical to obtain the correlations for all
different j’s studied in one shot.

In the next section we shall be a little more specific. If the four above rapidities
(uA, uB, vA, vB) or (uA, uB, uC, v) are chosen to be multiples of λ/4 in a certain
way (details will be given later), we can use the permutation property to arrange
the rapidities in g and g∗ in descending order, and then use the difference property
to make the smallest rapidity identically equal to zero. Then, all functions g and
g∗ in (3.28), (3.35), (3.30) and (3.39) can be brought to the form

g[m3, m2, m1, m0] = g

( m3︷ ︸︸ ︷
3
4λ, . . . , 3

4λ,

m2︷ ︸︸ ︷
1
2λ, . . . , 1

2λ,

m1︷ ︸︸ ︷
1
4λ, . . . , 1

4λ,

m0︷ ︸︸ ︷
0, . . . , 0

)
,

(3.40)

possibly permuting the mi ’s.

4. WAVEVECTOR-DEPENDENT SUSCEPTIBILITY

Since the correlation functions decay exponentially (T �= Tc), we need to put
all the terms that have approximately the same order of magnitude together. More
specifically we write

χ̄(qx , qy) ≡ kBT χ (qx , qy) = C(0, 0) + 2
∞∑

l=1

Sl , (with C(0, 0) = 1),

Sl =
l∑

m=1−l

[C(l, m) cos(qxl + qym) + C(−m, l) cos(−qx m + qyl)], (4.41)

where Sl contains the correlations of the top and right edges of the square whose
four corners are (±l,±l). The above cosines result from the use of the inversion
symmetry (3.33) in order to include the contributions of the other two edges. For
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T away from Tc, only a few Sl for l small are numerically significant. As T → Tc,
more and more terms need be included. This way the q-dependent susceptibility
can now be evaluated for different cases.

4.1. Sequences of Two Objects, Example I

We shall first consider some quasiperiodic sequences of two objects. Let the
sequence of rapidity lines be defined by (3.24) with the particular values

uA = 3λ/4, uB = 2λ/4, vA = λ/4, vB = 0. (4.42)

Comparing (3.28) and (3.35) with (3.40), we find

ḡ[m3, m2, m1, m0] = g[m3, m2, m1, m0],

g′[m1, m0, m3, m2] = g[m3, m2, m1, m0], (4.43)

where the permutation property and the difference property(4) are used for the
second identity. Now, comparing (3.26) with (3.34), we find

C(−m, l) = C(l, m), C∗(−m, l) = C∗(l, m). (4.44)

From (4.44), we find that the q-dependent susceptibility must have fourfold rota-
tional symmetry.

We can calculate the q-dependent susceptibility for fixed T �= Tc, (k �= 1),
to arbitrary precision using an algorithm of polynomial complexity. For this pur-
pose, we use quadratic difference equations(2,3,5,6,11) to numerically evaluate the
averaged correlation functions given by (3.26), (4.43) and (4.44) for T > Tc, and
replace g and 〈σ 〉 ≡ 0 by g∗ and 〈σ 〉 = (1 − k−2)1/8 for T < Tc. We have used
Maple software for this, as higher and higher precision arithmetic is needed closer
and closer to Tc. Substituting the results into (4.41), we obtain the q-dependent
susceptibility at different temperatures. We shall present our results mostly in den-
sity plots to get an overview of the full (qx , qy)-dependence. Our results, however,
are far more accurate than these plots suggest.

In Fig. 4, we show four density plots of 1/χ (q) for j = 0, 1, 2 or 3 and −2π <

qx , qy < 2π , at the one temperature T > Tc for which the above-Tc correlation
length ξ ≈ 8.3 (In the density plots, darker means a relatively larger value of χ (q),
and x ≡ qx , y ≡ qy .) We find that there is no incommensurate behavior, for all
different values of α j with j ≥ 0 and at arbitrary temperature. The peaks of χ (q)
are at the commensurate positions of the ordinary Ising model, i.e. (qx , qy) =

3 More precisely, ξ is the row correlation length of the uniform and symmetric square-lattice Ising
model with the same value of modulus k = (cosh2( 1

2 ξ−1) ± [cosh4( 1
2 ξ−1) − 1]1/2)2, with minus

for T > Tc. For T < Tc, we must choose plus, while ξ is then twice the actual row correlation
length.(12)
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Fig. 4. Density plots of 1/χ (qx , qy ) for cases when the sequences of rapidities (um ) and (vm ) are quasi-
periodic sequences of two objects given by (3.24) and (4.42) at k = 0.83791870 (ξ ≈ 8), T > Tc. There
is no significant j-dependence.

(2πm, 2πn) where m and n are any integers. We also find that χ (q) is indeed
invariant under 90◦ rotation.

To look at the situation more quantitatively, making sure that there are indeed
no incommensurate peaks, we can study χ (0, q) and χ (q, q). We have plotted
χ (q, q) versus q for j = 0, . . . , 4 and T < Tc in Fig. 5 (a), and also for T > Tc

in Fig. 5 (b). As j increases, there are more B type of rapidity lines. This in turn
means more weak bonds are present in the system. Therefore, as j increases,
the peaks in the susceptibility decrease, as shown in these plots. The changes
are very small, however. The plots clearly show no indication of incommensurate
peaks. The behavior of χ (q) for T > Tc is not much different from the behavior
at T < Tc, except that the peaks are sharper.
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Fig. 5. Plots of χ (q, q) versus x ≡ q for the cases given by (3.24) and (4.42) and j = 0, . . . , 4. The
curves for j = 0 have the highest value at q = 0, and the peaks decrease in magnitude as j increases.

We could give more density plots for different temperatures and also for
temperatures below and above Tc. But those plots would not be much different
from Fig. 4. We find that as T → Tc, the peaks of χ (q) become sharper. Also, the
peaks of χ (q) for T > Tc are sharper than those for T < Tc, as the correlation
length above Tc is only half in length compared to the one at the dual temperature
below Tc.(12) But it is hard to read that off from a density plot.

4.2. Sequences of Two Objects, Example II

Instead of (4.42), we may also choose

uB = 3λ/4, uA = 2λ/4, vB = λ/4, vA = 0. (4.45)

Comparing (3.28) and (3.35) with (3.40) again, we find

ḡ[m2, m3, m0, m1] = g[m3, m2, m1, m0],
(4.46)

g′[m0, m1, m2, m3] = g[m3, m2, m1, m0].

It is easily seen that (4.44) still holds, so that χ (q) still has 4-fold rotation symmetry.
The behaviors of χ (q) are essentially the same as in the previous case, except that
the peaks become sharper as j increases.

4.3. Sequences of Two Objects, Example III

If we let

uA = 3λ/4, uB = 2λ/4, vB = λ/4, vA = 0, (4.47)
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Fig. 6. Density plots of 1/χ (qx , qy ) for the cases defined by (3.24) and (4.47) at T > Tc, k =
0.49127583 (ξ ≈ 2). The susceptibility is like the one of the rectangular Ising model, as can be
seen with some effort, with peaks still at the commensurate positions.

then

ḡ[m3, m2, m0, m1] = g[m3, m2, m1, m0],
(4.48)

g′[m0, m1, m3, m2] = g[m3, m2, m1, m0].

Consequently, (4.44) no longer holds. As a result, χ (q) behaves more like that of
the rectangular Ising lattice, which is not invariant under 90◦ rotations, but still
has only commensurate peaks. Density plots are shown in Fig. 6.
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4.4. Sequences of Three Objects, Example IV

We now let the sequence of rapidity lines be defined by (3.25) and let

uA = 3λ/4, uB = 2λ/4, uC = λ/4, v = 0. (4.49)

Comparing (3.30) and (3.39) with (3.40), we obtain

g̃[m3, m2, m1, m0] = g[m3, m2, m1, m0],
(4.50)

g̃′[m0, m3, m2, m1] = g[m3, m2, m1, m0].

We evaluate the χ (q) in (4.41) by substituting this equation into (3.29), (3.31),
(3.32), (3.36), (3.37) and (3.38). The probabilities for the three-object sequence
given by (2.17) through (2.19) are quite complicated. Nevertheless, we find sim-
ilar behavior for all different j’s and temperatures. There is no incommensurate
behavior—the peak of the susceptibility χ (q) is at the commensurate position of
the ordinary Ising model, (qx , qy) = (0, 0), and repeated periodically with periods
2π .

In Fig. 7, four density plots are presented for T < Tc at k = 1.1934332 and
for j = 1, . . . , 4. We again find that χ (q) decreases as j increases. Since only the
(um) sequence is aperiodic, the distortion due to the quasiperiodicity on χ (q) is
along the diagonal. In this particular case, we find that the two diagonals are the
symmetry axes of χ (q).

4.5. Sequences of Three Objects, Example V

If instead of (4.49), we let

uA = 3λ/4, uC = 2λ/4, uB = λ/4, v = 0, (4.51)

then

g̃[m3, m1, m2, m0] = g[m3, m2, m1, m0],
(4.52)

g̃′[m0, m3, m1, m2] = g[m3, m2, m1, m0].

The resulting q-dependent susceptibility is less symmetric. Four density plots at
T < Tc, k = 1.1934332, are shown in Fig. 8 for j = 1, . . . , 4. Again we only find
commensurate peaks.

5. A MIXED CASE

We have examined quasiperiodic Ising lattices on a square lattice, whose
interactions are quasiperiodic and ferromagnetic, and we have found very similar
commensurate behaviors.
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Fig. 7. Density plots of 1/χ (qx , qy ) for cases when only (um ) is a quasi-periodic sequence. They are
given by (3.25) and (4.49) at T < Tc, k = 1.1934332. Again the peaks are only at the commensurate
positions. They are elongated in a diagonal direction.

Things change dramatically if we consider mixed cases with both ferro- and
antiferromagnetic interactions, as we already know from our previous work that
there will be many incommensurate peaks within the unit cell as the temperature
moves close to the critical value.(2,3) There is one new aspect: The results, especially
the positions of the many incommensurate peaks, are heavily dependent on the
value of j . We shall illustrate this with one example based on some ideas of Sec. 5
of Ref. 2 where several j = 0 cases have been studied.

Unlike the ferromagnetic case, we can now construct an example starting from
the symmetric square-lattice Ising model and flipping the signs of the couplings by
site-dependent gauge transformations. Using Theorem 1, Eqs. (5.17) and (5.18)
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Fig. 8. Density plots of 1/χ (qx , qy ) for the cases given by (3.25) and (4.51) at T < Tc, k = 1.1934332.
Still the peaks of χ (qx , qy ) are at the commensurate positions. The peaks are now elongated and a
slight dependence on j may be observed.

of Ref. 2 are now replaced by

φ( j)(m) = (−1)
m/α j �(1 − 2{m/α j }),

=
∞∑

l=−∞

e2π i(l+1/2)m/α j

(l + 1/2)2π2
= φ( j)(−m). (5.53)

Choosing a model aperiodic in both diagonal directions as in Sec. 5.6 of
Ref. 2, the averaged connected correlation function now becomes

C (c)(l, m) = φ( j)(l + m)φ( j)(l − m)C (c)
0 (l, m), (5.54)
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with C (c)
0 (l, m) the connected pair-correlation function of the square-lattice Ising

model. This implies that χ (q) has many incommensurate peaks within the unit
cell, and is given by

χ (qx , qy) =
∞∑

l=−∞

∞∑

m=−∞

χ0(qx + 2π (l + m + 1)/α j , qy + 2π (l − m)/α j )

(l + 1/2)2(m + 1/2)2π4
,

(5.55)
with χ0(q) the wavevector-dependent susceptibility of the regular square-lattice
Ising model.

Density plots are given in Fig. 9 for four cases with correlation length ξ ≈ 16.
Clearly, the results depend strongly on j . The case j = 3 is the most different as it
almost looks like the periods have been halved. This can be explained easily since
2π/α3 ≈ π/2.

6. CONCLUSIONS

From the current work and our previous papers(1−3) we can draw several
conclusions:

• The wavevector-dependent susceptibilities χ (q) of models, whose spin
sites are on regular lattices, are always periodic. This includes cases when
the interactions between the spins are quasi-periodic.

• When the interactions between spins are quasiperiodic, but strictly ferro-
magnetic, χ (q) has only commensurate peaks, with behavior very similar
to that of the regular Ising model.

• The q-dependent susceptibilities χ (q) of models on regular periodic lat-
tices can have everywhere-dense incommensurate peaks in every unit cell,
but only for cases for which the interactions between spins are mixed with
both ferro- and antiferromagnetic couplings present.(2,3)

• When the lattice is quasiperiodic—such as a Z -invariant Ising model on
Penrose tiles—χ (q) is no longer periodic but quasiperiodic and exhibits
everywhere-dense incommensurate peaks, even for the case of purely fer-
romagnetic couplings. Only few of these peaks are visible within a given
limited area of q-space when the temperature is far away from the critical
temperature. The number of visible peaks increases as T approaches Tc.(1)

There are many other quasiperiodic sequences. Still we have examined a variety
of cases and believe that the above conclusions are quite generic.

It may be interesting to consider the q-dependent susceptibility χ (q) of the
Z -invariant Ising model on the labyrinth(13−15) for which the distances between
the spins are also aperiodic. To obey the symmetry, the couplings of pairs of spins
must be related to the distances between the spins. When the distances are equal,
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Fig. 9. Density plots of 1/χ (qx , qy ) for the mixed case for four values of j , ( j = 0, . . . , 3), with qx

and qy in the interval (−π, π ) and k = 0.915398728 · · ·. Now there are many incommensurate peaks
and their positions depend strongly on j . The principal peaks are at (±q j , 0), (0,±q j ), with q0 =
2π (1 − 1/α0) = 2.39996 · · ·, q1 = 2π/α1 = 2.60258 · · ·, q2 = 2π/α2 = 1.90239 · · ·, q3 = 2π/α3 =
1.48325 · · ·. This last value is close to π/2, which is reflected in figure (d).

the corresponding couplings must be chosen to be equal. Since the coupling K and
K̄ in a Z -invariant model are related by (1.4), our preliminary efforts in this regard
have not been successful, but the model deserves further investigation. One thing
we can predict: The q-dependent susceptibility χ (q), for the Ising model on the
labyrinth, can no longer be periodic, and its peaks should be at incommensurate
positions.
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